Effect of Imperfections and Damping on the Type of Nonlinearity of Circular Plates and Shallow Spherical Shells
نویسندگان
چکیده
The effect of geometric imperfections and viscous damping on the type of nonlinearity i.e., the hardening or softening behaviour of circular plates and shallow spherical shells with free edge is here investigated. The Von Kármán large-deflection theory is used to derive the continuous models. Then, nonlinear normal modes NNMs are used for predicting with accuracy the coefficient, the sign of which determines the hardening or softening behaviour of the structure. The effect of geometric imperfections, unavoidable in real systems, is studied by adding a static initial component in the deflection of a circular plate. Axisymmetric as well as asymmetric imperfections are investigated, and their effect on the type of nonlinearity of the modes of an imperfect plate is documented. Transitions from hardening to softening behaviour are predicted quantitatively for imperfections having the shapes of eigenmodes of a perfect plate. The role of 2:1 internal resonance in this process is underlined. When damping is included in the calculation, it is found that the softening behaviour is generally favoured, but its effect remains limited.
منابع مشابه
Buckling of Stiffened Thin-Walled Cylindrical Shells under Axial Compression with Symmetrical Imperfections
This study aimed to investigate the effects of stiffeners on buckling of thin cylindrical shells under uniform axial compression. To this end, more than 300 finite element models of stiffened cylindrical shells were prepared. The variables considered are shell thickness, number, dimension and the location of the vertical and horizontal stiffeners as well as circular symmetrical imperfections. R...
متن کاملThermomechanical Buckling of Simply Supported Shallow FGM Spherical Shells with Temperature dependent Material
The thermomechanical buckling of simply supported thin shallow spherical shells made of functionally graded material is presented in this paper. A metal-ceramic functionally graded shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure metal on the inner surface to pure ceramic on the outer surfa...
متن کاملBuckling Analysis of Functionally Graded Shallow Spherical Shells Under External Hydrostatic Pressure
The aim of this paper is to determine the critical buckling load for simply supported thin shallow spherical shells made of functionally graded material (FGM) subjected to uniform external pressure. A metal-ceramic functionally graded (FG) shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure me...
متن کاملFree Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation
In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is a...
متن کاملEffects of Geometric Nonlinearity on Stress Analysis in Large Amplitude Vibration of thin Circular Functionally Graded Plates With Rigid Core
Abstract In this paper , the nonlinear the nonlinear free and forced axisymmetric vibration of a thin circular functionally graded plate with rigid core is formulated in terms of von-Karman’s dynamic equation , and a semi-analytical approach is developed.Functionally graded material (FGM) properties vary through the thickness of the plate.FGM s are spatial composites within which material prop...
متن کامل